Distribuições de Probabilidades Discretas

Vimos até agora os mais variados conceitos relacionados a distribuições de probabilidades:

Sabemos que:

$$\sum_{-\infty}^{+\infty} f(x) = 1$$

$$\int_{-\infty}^{+\infty} f(x) dx = 1$$

Entretanto até agora admitimos sempre que f(x), seja no caso discreto (fmp) ou contínuo (fdp), fosse conhecido!

Na vida real, entretanto, o usuário dos métodos estatísticos não é capaz de gerar informação suficiente para caracterizar totalmente a distribuição de probabilidade. As amostras normalmente são pequenas, mas podem fornecer **informação** sobre a distribuição de probabilidades a que fazem parte.

```
Ex. 1: Tiro ao alvo (dou 5 tiros)
sucesso = acertar o alvo
fracasso = errar o alvo
P(S) = P(F) = \frac{1}{2}
```

```
Ex.2: Tirar o n^{\circ} 4 jogando o dado
sucesso = 4
fracasso = 1, 2, 3, 5, 6
P(S) = 1/6 e P(F) = 5/6
```

```
Ex. 3: Tirar um rei de paus (c/ reposição)
de 1 baralho de 52 cartas
sucesso = rei de paus
fracasso = outra carta
P(S) = 1/52 e P(A) = 51/52
```

```
Ex. 4: Tirar um rei de paus (s/reposição)

1°. P(S) = 1/52

2°. P(S) = 1/51 ou 0 (se já tiver saído!)

3°. P(S) = 1/50 ou 0 (se já tiver saído anteriormente)
```

Os experimentos 1, 2 e 3 são completamente diferentes, mas a estrutura deles é a mesma! Todas as variáveis aleatórias representando o n^{o} de sucessos em tentativas

independentes, onde a probabilidade de sucesso permanece **constante** ao longo do experimento, têm o mesmo comportamento e podem ser descritas pela mesma fórmula.

Diversos comportamentos de variável aleatória já foram estudados – são as distribuições de probabilidades empíricas (ou teóricas), como por exemplo, a Binomial, Geométrica, Hipergeométrica, Binomial Negativa, Poisson, Normal, Gama, Lognormal, etc.

Como estas distribuições já têm um comportamento conhecido e o cálculo de suas probabilidades é dado por uma **fórmula** já estabelecida, tentamos encontrar uma distribuição na qual os **nossos dados** (valores assumidos pela variável aleatória estudada) se ajustem. O grau de ajustamento é medido pelos testes de aderência.

1. DISTRIBUIÇÃO DE PROBABILIDADES DISCRETAS

Em capítulo anterior vimos como representar uma f.m.p. graficamente, de forma tabular ou por **fórmulas**. A despeito do modo de apresentação, o comportamento da variável aleatória era descrito.

Muitas variáveis aleatórias associadas a experimentos diferentes têm propriedades semelhantes e podem ser descritas pela mesma distribuição de probabilidades e podem ser representados pela mesma **fórmula**.

1.1. DI STRI BUI ÇÃO DE PROBABI LI DADES UNI FORME

A mais simples de todas as distribuições de probabilidades discretas é aquela na qual a variável aleatória assume cada um de seus valores com igual probabilidade. Tal distribuição de probabilidade é chamada distribuição de probabilidade Uniforme, sendo que fmp dada por:

$$f(x;k) = \frac{1}{k}, \quad x = x_1, x_2 ... x_k$$

Usamos uma nova notação para a f.m.p. – no lugar de f(x) colocamos f(x;k) para indicar que a distribuição Uniforme depende do parâmetro "k".

Uma caixa contém 4 lâmpadas:

Cada um dos elementos do espaço amostral $S = \{40, 60, 75, 100\}$ ocorre com probabilidade igual a 1/4. Logo, temos uma distribuição de probabilidades Uniforme, com:

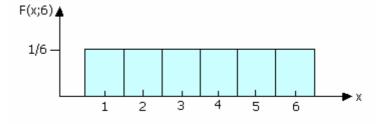
$$f(x;4) = \frac{1}{k}$$
, $x = 40$, 60, 75, 100
variável aleatória: "tipodelâmpadas"

Exercício 6.2

Quando um dado é lançado, cada elemento do espaço amostral $\{S = 1, 2, 3, 4, 5, 6\}$ ocorre com probabilidade igual a 1/6. Assim, a f.m.p. Uniforme é:

$$f(x; k) = \frac{1}{6}, \quad x = 1, 2, 3, 4, 5, 6$$
variável aleatória = "face do dado"

Sendo assim, o gráfico que representa a sua distribuição de probabilidade de x é um conjunto de retângulos de altura igual:



Sua média é dada por:

Por definição:

$$\mu_{x} = E[X] = \sum_{x} x. \ f(x) = \sum_{x} x. \frac{1}{k} = \frac{\sum_{i=1}^{k} x_{i}}{k}$$

$$f(x) = f(x,k) = \frac{1}{k}$$

Então, a média
$$\,\text{\'e}\,$$
 igual a :
$$\mu_x = \frac{\displaystyle\sum_{i=1}^k x_i}{k}$$

Sua variância é dada por:

Por definição:

$$\sigma_{x}^{2} = E[(X - \mu)^{2}]$$

$$g(x) \text{ \'e função de } x \text{ !}$$

$$E[g(X)] = \sum_{x} g(x).f(x)$$

Então:

$$\sigma_{x}^{2} = E[(X - \mu)^{2}] = \sum_{i=1}^{k} (x_{i} - \mu)^{2}.f(x; k)$$

variância:

$$\sigma_{x}^{2} = \frac{\sum_{i=1}^{k} (x_{i} - \mu)^{2}}{k}$$

Exercício 6.3

Calcule E (x) e σ_x^2 para o exemplo do dado.

$$\mu_X = \frac{1 + 2 + 3 + 4 + 5 + 6}{6} = 3.5$$

$$\sigma_x^2 = \frac{(1-3.5)^2 + (2-3.5)^2 + ... + (6-3.5)^2}{k} = \frac{35}{12}$$

1.2. DISTRIBUIÇÃO DE PROBABILIDADES BINOMIAL

Nesta distribuição de probabilidades, o experimento (E) consiste em n tentativas repetidas, cada uma com apenas 2 possibilidades de ocorrência – **fracasso** ou **sucesso**.

Considere um baralho, no qual as cartas são retiradas, **com reposição**, e rotuladas de sucesso (se for vermelha) e fracasso (se for preta).

Exercício 6.5

Jogar um dado e rotular sucesso (a face 4) e fracasso (qualquer outra face).

Os dois experimentos descritos têm propriedades semelhantes – cada tentativa é independente da outra e a probabilidade de sucesso permanece constante nas várias tentativas.

Este processo é chamado de **Processo de Bernoulli** e cada tentativa é chamada de **Tentativa de Bernoulli**.

Processo de Bernoulli

Para ser considerado um processo de Bernoulli, o experimento tem que possuir as seguintes características:

- 1. o experimento consiste de **n tentativas repetidas**;
- cada resultado do experimento (Evento) pode ser classificado como sucesso ou fracasso;
- 3. a probabilidade de sucesso "p" permanece constante de tentativa para tentativa;
- 4. as tentativas são independentes.

Exercício 6.6

Considere um conjunto de **tentativas de Bernoulli** onde 3 itens são selecionados de um processo produtivo e classificado como defeituoso e não-defeituoso. Suponha que **sucesso seja o item defeituoso**.

$$S = \left\{ \begin{array}{ccccc} NNN, & NND, & NDN, & DNN, & DDN, & DND, & NDD, & DDD \end{array} \right\}$$

$$x = 0 \quad 1 \quad 1 \quad 1 \quad 2 \quad 2 \quad 2 \quad 3$$

Se a fábrica produz 25% de produtos defeituosos, calcule a probabilidade de dois itens serem defeituosos:

Solução:

$$P(x=2) = P(N \cap D \cap N) = P(N) \cdot P(D) \cdot P(N) = \frac{3}{4} \cdot \frac{1}{4} \cdot \frac{3}{4} = \frac{9}{64}$$

LEMBRANDO:

$$P(A/B) = \frac{P(A \cap B)}{P(B)}$$
Se A é independente de B

$$P(A/B) = P(A)$$
 .. $P(A \cap B) = P(A)$. $P(B)$

E a distribuição de probabilidades de X é dada por:

Х	0	1	2	3	
f (x)	27/64	27/64	9/64	1/64	= 1

O número de sucessos (variável aleatória "X") em n tentativas de Bernoulli é denominada variável aleatória binomial, sua fmp é denominada Distribuição Binomial e seus valores são denotados por b (x; h, p), uma vex = vexprobabilidade de sucesso "p".

Deduzindo a Fórmula Geral

(Introdução à Estatística, Editora Ática, pág. 93)

Numa população onde a probabilidade de uma pessoa ser canhota é 20%, selecionaremos as pessoas e obteremos x canhotos. Neste experimento estamos considerando:

S = canhoto

F = não canhoto

p = probabilidade de sucesso

x = número de sucessos

Notas de Aula - Profa Ticiana Marinho de Carvalho Studart

Suponha que as "n" pessoas foram entrevistadas e o resultado obtido tenha sido:

pessoa nº				
1		S	p	
2		S	p	
3		S S S	p	
4		S	р	
5		S	р	
•		•	•	
•		•	•	
•		•	•	
Χ		S	p	
x + 1		F	q	
			•	
•		•	•	
n		F	q	

A probabilidade que os eventos acima ocorram nesta seqüência exata é:

$$(p.p.p...p) \cdot (q.q...q)$$
x vezes (n-x) vezes
$$= p^{x} \cdot q^{(n-x)}$$

Mas os x sucessos podem ocorrer em várias seqüências, ou ainda, de $\mathbf{C}_{\mathbf{x}}^{\mathbf{n}}$ modos, onde

$$C_x^n = {n \choose x} = \frac{n!}{x!(n-x)!}$$

Assim, a probabilidade de ocorrerem "x" sucessos em "n" tentativas será de:

$$\binom{n}{x} \; p^x \; . \; \; q^{(n-x)}$$

$$b(x; n, p) = {n \choose x} p^x \cdot q^{(n-x)}$$
 BINOMIAL

Porque o nome BINOMIAL?

(Ang and Tang, pag 388)

$$\binom{n}{x} = \frac{n!}{x! \, (n - x)!} \quad \text{\'e conhecido como:}$$

Expansão Binomial

$$(x + y)^{n} = \binom{n}{0} x^{n} \cdot y^{0} + \binom{n}{1} x^{n-1} \cdot y^{1} + \binom{n}{2} x^{n-2} \cdot y^{2} + \dots + \binom{n}{n} x^{0} \cdot j^{n}$$

$$x^{n} \qquad n \cdot x^{n-1} \cdot y \qquad n \cdot (n-1) x^{n-2} \cdot y^{2} \quad \dots \quad y^{n}$$

$$p(0) \qquad p(1) \qquad p(2) \qquad p(n)$$

A distribuição Binomial leva este nome porque p(0), p(1), p(2) ... e p(n) são os termos do desenvolvimento $(q + p)^n$.

Exercício 6.7

A probabilidade de que um certo componente sobreviva a um dado teste de choque é de 3/4. Ache a probabilidade de que exatamente 2 componentes dos próximos 4 componentes a serem testados sobrevivam.

Solução:

$$b(x;n,p) = \binom{n}{x} p^x . q^{n-x}$$

Sabemos que:

p =
$$\frac{3}{4}$$

q = $\frac{3}{4}$
b (2; 4, $\frac{3}{4}$) = $\left(\frac{4}{2}\right) \cdot \left(\frac{3}{4}\right)^2 \cdot \left(\frac{1}{4}\right)^2 = \frac{27}{128}$
x = 2
n = 4

3.1. A Função Repartição da Binomial

Sabemos que, por definição,

$$F(x) = P(X < x) = \sum_{-\infty}^{x} f(x)$$

No exemplo anterior,

$$f(x) = b(x; 4, 3/4) = \begin{cases} \binom{4}{x} \frac{3}{4}^{x} \cdot \frac{1}{4}^{(n-x)}, & 0 \le x \le 4 \\ 0, & \text{outros valores} \end{cases}$$

• Qual a probabilidade de x < 2 ?

F (1) = P (X < 2) =
$$\sum_{0}^{1} b\left(x; 4, \frac{3}{4}\right) = P(x = 0) + P(x = 1)$$

= b (0; 4, 3/4) + b (1; 4, 3/4)

• Qual a probabilidade de $x \le 2$?

F (2) = P (x ≤ 2) = P (x = 0) + P (x = 1) + P (x = 2)
= b (0; 4,
$$\frac{3}{4}$$
) + b (1; 4, $\frac{3}{4}$) + b (2; 4, $\frac{3}{4}$)

Exercício 6.9

A probabilidade de que um paciente sobreviva de uma doença rara é 0,4. Se 15 pessoas contraíram a doença, qual a probabilidade de que:

- a) no mínimo 10 sobrevivam;
- b) entre 3 e 8 sobrevivam;
- c) exatamente 3 sobrevivam

Solução:

$$p = 0.4$$

$$n = 15$$

a)
$$P(x \ge 10) = P(x=10) + P(x=11) + ... P(x=15)$$

ou

$$= 1 - P(x < 10)$$

$$1 - \sum_{x=0}^{9} b(x; 15, 0, 4)$$
 (ver Walpole, pg 675)

= 0,0338

b) $P(3 \le x \le 8)$

RELEMBRANDO:

$$= F(8) - F(3) + P(x=3)$$
ou sej a
$$= \sum_{x=0}^{8} b(x; 15, 0, 4) - \sum_{x=0}^{2} b(x; 15, 0, 4)$$

Então:

$$P(3 \le x \le 8) = 0.8779$$

c) P(x=5)

Se quiser usar a tabela da FDP da Binomial (Walpole, 672-277)

$$= \sum_{\substack{0 \ 0,4032}}^{5} b(x;15,0,4) - \sum_{\substack{0 \ 0,2173}}^{4} b(x;15,0,4) = 0,1859$$

A média e a variância da distribuição Binomial b(x; n, p) são dados por:

$$\mu = n \cdot p \qquad \qquad \sigma^2 = npq$$

(Demonstração: Walpole, 120)

Exercício 6.10

a) Ache a média e a variância da variável aleatória binomial do exemplo anterior (doença rara).

Solução:

Por definição

$$\mu = E(x) = n \cdot p = 15 \cdot 0.4 = 6$$

$$\sigma^2 = E(x - \mu^2) = n. p. q = 15. 0.4. 0.6 = 3.6$$

b)Interprete o Teorema de Chebyshev no intervalo $\mu~\pm~2\sigma$

Pelo Teorema de Chebyshev

Sabemos que:

$$P\big(\mu - k\sigma < x < \mu + k\sigma\big) \geq 1 - \frac{1}{k^2}$$

Então:

$$P\underbrace{(6-(2)(1,897)}_{2,206} < x < \underbrace{6+(2)(1,897)}_{9,794} \ge \underbrace{1-\frac{1}{4}}_{3/4=0,75}$$

 $\sigma = \sqrt{\sigma^2} = 1,897$

 $P(2,206 < x < 9,794) \ge 0,75$

$$P(3 \le x \le 9) \ge 0.75$$

Se quisermos saber o exato, temos que usar a tabela ou as fórmulas:

$$= \sum_{x=0}^{9} b(x;15,0.4) - \sum_{x=0}^{2} b(x;15,0.4) = _{=0,9391}$$

Exercício 6.11

(Chalés Haan, 71)

a) Em média, quantas vezes uma cheia com Tr = 10 anos ocorrerá em período de 40 anos? b) Qual a probabilidade de que exatamente este número ocorra em 40 anos?

a)
$$\mu$$
 = n . p
$$por \ definição \quad Tr = \frac{1}{P} \therefore P = \frac{1}{10} = 0.1$$

$$\mu = 40 \cdot 0.1 = 4$$

b)
$$b(x; n, p) = \left(\frac{n}{x}\right)p^{x}.q^{n-x}$$

 $b(4; 40, 0, 1) = \left(\frac{40}{4}\right)(0,1)^{4}.(0,9)^{36} = 0,2059$

Exercício 6.12

(Haan, 72)

A Secretaria de obras de uma determinada cidade decidiu construir um dique de proteção ao longo de um determinado rio. Fazendo a análise econômica da obra, foi decidido que seria construído um dique que protegesse a cidade de uma cheia de até 75.000 cfs. Foi determinado ainda que, se uma enchente de 75.000 Notas de Aula - Profa Ticiana Marinho de Carvalho Studart

cfs ocorresse em um período de 5 anos, a Secretaria poderia consertar a obra e não ter prejuízo. Caso mais de uma enchente superasse 75.000 cfs, a Secretaria perderia dinheiro. Se a probabilidade de uma cheia exceder 75.000 cfs é de 0,15, qual a probabilidade da Secretaria ter lucro?

a) Lucro – x = 0

$$b(0; 5, 0.15) = {5 \choose 0} (0.15)^0 \cdot (0.85)^5 = 0.44371$$

b) Empatar – x = 1

b(1; 5, 0,15) =
$$\begin{pmatrix} 5 \\ 1 \end{pmatrix}$$
 $(0,15)^{1}$. $(0,85)^{5} = 0,39150$

c) Prejuízo

$$1 - 0.44371 - 0.3915 = 0.1648$$

O investimento não é atrativo, pois a probabilidade de ter prejuízo, ou na melhor das hipóteses, empatar = 0.3915 + 0.1648 = 0.56

Exercício 6.13

(Haan, 71.)

Qual deve ser o Tr da cheia de projeto para que se tenha 90% de certeza de que a mesma **não será excedida** em um período de 10 anos ?

Solução:

x = 0
n = 10
b (0; 10, p) = 0,90

$$0,90 = \binom{10}{0} p^{0}.q^{10}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$
1 1 (1-p)

$$[(1-p)^{10}]^{1/10} = [0,90]^{1/10}$$

$$1 - p = (0,90)^{1/10}$$

$$1 - p = 0,9895$$

$$p = 1 - 0,9895 = 0,0105$$

$$Tr = \frac{1}{0,0105} = 95,4 \text{ anos}$$

b) Caso uma cheia com Tr = 10 anos fosse utilizada, qual seria a probabilidade dela ser excedida ?
 Solução:

basta acontecer uma vez (= uma vez ou mais)

$$= 1 - b (0; 10, 0, 1) = 1 - 0,3487 = 0,6513$$

1.3.DI STRI BUI ÇÃO MULTI NOMI AL

O experimento binomial se transforma em um experimento multinomial se permitirmos que o experimento tenha mais de 2 (sucessos e fracassos) resultados possíveis.

Se uma dada tentativa pode resultar em K eventos E_1 , E_2 , E_3 ... E_k , com probabilidades p_1 , p_2 , ... p_k , então a distribuição de probabilidades das variáveis aleatórias x_1 , x_2 , x_3 ... x_k , as quais representam o número de ocorrências dos eventos E_1 , E_2 , E_3 ... E_k , em n tentativas independentes é dado por:

$$f(x_1, x_2...x_{kj}, p_1, p_2...p_k; n) = \binom{n}{x_1, x_2...x_{kj}} p_1^{x_1}, p_2^{x_2}...p_k^{x_k}$$

com

$$\sum_{i=1}^k x_i = n \qquad e \qquad \sum_{i=1}^k p_i = 1$$

Exercício 6.14

Se um par de dados é jogado 6 vezes, qual a probabilidade de se obter: <u>duas vezes</u> um resultado que some 7 ou 11, os dois dados com faces iguais apenas 1 vez e qualquer outra combinação 3 vezes?

<u>Solução:</u>

Os possíveis eventos são:

 E_1 = total igual a 7 ou 11;

 E_2 = faces iguais;

 E_3 = nem faces iguais, nem total de 7 e nem total de 11.

	1	2	3	4	5	6
1	(1,1)	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)
2	(2,1)	(2,2)	(2,3)	(2,4)	(2,5)	(2,6)
3	(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	(3,6)
4	(4,1)	(4,2)	(4,3)	(4,4)	(4,5)	(4,6)
5	(5,1)	(5,2)	(5,3)	(5,4)	(5,5)	(5,6)
6	(6,1)	(6,2)	(6,3)	(6,4)	(6,5)	(6,6)

$$= \{ (6,1), (5,2), (4,3), (3,4), (2,5), (1,6), (5,6), (6,5) \}$$

$$= \{(1,1), (2,2), (3,3), (4,4), (5,5), (6,6)\}$$

= outros pares.

$$n_1 = 2$$

$$\frac{8}{\delta \varepsilon} = {}_1 q$$

$$n_2 = 1$$

$$p_2 = \frac{6}{36}$$

$$n_3 = 3$$

$$p_3 = \frac{22}{36}$$

Assim,

$$f(2, 1, 3, \frac{8}{36}, \frac{6}{36}, \frac{22}{36}, 6) = {6 \choose 2,1,3} \left(\frac{8}{36}\right)^2 \cdot \left(\frac{6}{36}\right)^1 \left(\frac{22}{36}\right)^3$$
$$= \frac{6}{2!1!3!} \cdot \left(\frac{8}{36}\right)^2 \cdot \left(\frac{6}{36}\right)^1 \left(\frac{22}{36}\right)^3$$
$$= 0,1127$$

LEMBRETE

O número de permutações distintas de "n" elementos onde n1 são de um tipo, n_2 de outro tipo e n_3 de um terceiro tipo é dado por:

$$\frac{n\,!}{n_1\,!\,\,n_2\,!\,\,n_3\,!}$$

Em 100 anos de chuva coletadas em uma localidade, 30 foram considerados "normais", 55 foram considerados "secos" e 15 foram considerados "chuvosos". Calcule a probabilidade de em uma amostra de 10 anos escolhidos aleatoriamente, termos 3 normais, 3 chuvosos e 4 secos.

Solução:

n = 10

$$x_1 = 3$$
 $E_1 = normal$ $P_1 = \frac{30}{100} = \frac{3}{10}$
 $x_2 = 4$ $E_2 = secos$ $P_2 = \frac{55}{100}$
 $x_3 = 3$ $E_3 = chuvosos$ $P_3 = \frac{15}{100}$

por definição:

$$f(x) = {n \choose x_1, x_2, x_3} p_1^{x_1}, p_2^{x_2} ... p_3^{x_3}$$

os parâmetros da distribuição são n, os valores assumidos para as variáveis aleatórias x_1 , x_2 , x_3 e suas probabilidades.

$$\qquad \qquad \qquad \qquad \qquad f \bigg(x_1, \, x_2, \, x_3; \frac{30}{100}, \frac{55}{100}, \frac{15}{100}; 10 \bigg) = \left(\frac{10}{3}, \frac{30}{4}, \frac{30}{100} \right)^3 \left(\frac{55}{100} \right)^4 \left(\frac{15}{100} \right)^3$$

A média (esperança matemática) e a variância da distribuição de probabilidade multinomial são dadas por:

$$E[X_i] = np_i \qquad \sigma^2(X_i) = np_i(1 - p_i)$$

Exercício 6.16

Em um certo rio a probabilidade de que a descarga máxima anual seja inferior a $140 \text{ m}^3/\text{s} \neq 0,2$. A probabilidade de que esteja entre $140 \text{ e } 280 \text{ m}^3/\text{s} \neq 0,4$ e de que exceda $280 \text{ m}^3/\text{s} \neq 0,4$.

a) Qual a probabilidade de 4 descargas máximas inferiores a 140 m³/s, e 8 entre 140 e 280 ocorrerem nos próximos 20 anos ?

Solução:

 x_1 = descarga máxima inferior a 140 m³/s;

 x_2 = descarga máxima entre 140 e 280 m³/s;

 x_3 = descarga máxima superior a 280 m³/s.

$$n = 20$$

$$x_1 = 4$$

$$p_1 = 0.2$$

$$x_2 = 8$$

$$p_2 = 0.4$$

$$x_2 = 8$$

$$p_2 = 0.4$$

$$f(4;8;8;0,2;0,4;0,4;20) = {20 \choose 4 \ 8 \ 8}(0,2)^4 \ (0,4)^8 \ (0,4)^8$$

$$=\frac{20!}{4! \ 8! \ 8!}.(0,2)^4 \ (0,4)^8 \ (0,4)^8 = 0,043$$

b) O valor esperado para 20 anos de observação de vazões máximas será:

$$E[X_1] = np_1 = 20(0,2) = 4$$

$$E[X_2] = np_2 = 20(0.4) = 8$$

$$E[X_3] = np_3 = 20(0.4) = 8$$

1.4.DI STRI BUI ÇÃO HI PERGEOMÉTRI CA

Vejamos o problema de se retirar cartas do baralho <u>sem reposição</u>. Se as cartas não são colocadas de volta os eventos não são independentes, logo não se pode pensar em ajustar uma distribuição Binomial.

Exercício 6.17

Seja um baralho de 52 cartas. Achar a probabilidade de se tirar 3 cartas vermelhas em 5 cartas retiradas sem reposição.

Solução:

Sucesso - carta vermelha

Fracasso - carta preta

Mas p não é constante ao longo dos 5 experimentos. Vejamos:

Tentativa 1:

$$p = \frac{26}{50}$$
Tentativa 2:
$$p = \frac{26}{51}$$
 (se a anterior foi vermelha)
$$ou$$

$$p = \frac{25}{51}$$
 (se a anterior foi preta)

p não é constante - não é BI NOMI AL!

Se for para calcular a probabilidade de tirar 3 cartas vermelhas em 5 cartas retiradas aleatoriamente:

S = {V, V, V, P, P} 1 seqüência possível!

Existem $\binom{26}{3}$ maneiras de se retirar 3 vermelhas e para cada uma delas existem $\binom{26}{2}$ maneiras de se retirar 2 pretas. Pelo Teorema da Contagem, eu tenho $\binom{26}{3}$. $\binom{26}{2}$ maneiras de retirar 3 vermelhas e 2 pretas do baralho de 52 cartas.

Mas a 5 cartas selecionadas podem ser tiradas de $\binom{52}{5}$ maneiras.

Logo a probabilidade de se selecionar 5 cartas sem reposição de um baralho de 52 cartas, sendo 3 vermelhas e 2 pretas é dada por:

$$\frac{\binom{26}{3}\binom{26}{2}}{\binom{52}{5}}$$

Exercício 6.18

Um comitê de 5 pessoas foi selecionado de um grupo formado por 3 mulheres e 5 homens. Ache a f.m.p. do número de mulheres do comitê.

X = número de mulheres

5 pessoas selecionadas

$$S = \{0, 1, 2, 3\}$$

Homem Mulher

Se
$$x = 0$$
 $\begin{cases} 0 \text{ Mulher} \end{cases}$

$$\frac{\binom{5}{5}\binom{3}{0}}{\binom{8}{5}}$$

Homem Mulher

Se
$$x = 1$$

$$\begin{cases} 1 & \text{Mulher} \end{cases}$$

$$\frac{\binom{5}{4} \binom{3}{1}}{\binom{8}{5}}$$

Homem Mulher

Se
$$x = 2$$
 $\begin{cases} 2 \text{ Mulheres} \end{cases}$

$$\frac{\binom{5}{3}\binom{3}{2}}{\binom{8}{5}}$$

Homem Mulher

$$\frac{\binom{5}{2}\binom{3}{3}}{\binom{8}{5}}$$

$$=\frac{\binom{5}{5-x}\binom{3}{x}}{\binom{8}{5}}$$

Generalizando:

Estamos interessados em calcular a probabilidade de selecionar "x" sucessos de "k" itens rotulados de <u>sucessos</u> e "(n - x)" falhas de "N - K" itens rotulados de "falhas", quando uma amostra aleatória de tamanho "n" é selecionada entre "N" itens.

Assim,

$$h(x; N; n; k) = \frac{\binom{k}{x}\binom{N-k}{n-x}}{\binom{N}{n}}, x = 0, 1, 2 ... n$$

A média e a variância de uma distribuição de probabilidades hipergeométrica h (x; N, n, k) são:

$$E[X] = \mu_x = \frac{nk}{N} \qquad \qquad e \qquad \qquad \sigma_x^2 = \frac{N-n}{N-1}.n.\frac{k}{N} \left(1 - \frac{k}{N}\right)$$

(Demonstração: Walpole, 128)

Exercício 6.19 (Haan) pág.69

Assuma que durante um certo mês de setembro, 10 dias chuvosos ocorreram.

Uma amostra de 10 dias é selecionada aleatoriamente e seus dados climáticos analisados.

- a) Qual a probabilidade de 4 destes dias terem sido chuvosos?
- b) Qual a probabilidade de que menos de 4 dias terem sido chuvosos?
 Solução:

$$h(x; N; n; k) = \frac{\binom{k}{n}\binom{N-k}{n-x}}{\binom{N}{n}} \quad x = 1, 2 ...n$$

$$\begin{cases}
N = 30 \\
n = 10 \\
k = 10
\end{cases}$$

a)
$$h(4; 30; 10; 10) = \frac{\binom{10}{4}\binom{30-10}{10-4}}{\binom{30}{10}}$$

$$=\frac{\binom{10}{4}\binom{20}{6}}{\binom{30}{10}} = \frac{\frac{10!}{4! \ 6!} \cdot \frac{20!}{6! \ 14!}}{\frac{30!}{10! \ 20!}} = 0,271$$

$$=\frac{\binom{10}{0}\binom{20}{10}+\binom{10}{1}\binom{20}{9}+\binom{10}{2}\binom{20}{8}+\binom{10}{3}\binom{20}{7}}{\binom{30}{10}}=0,560$$

Exercício 6.20 (Haan, 69)

Qual a probabilidade de se obter exatamente 2 ases em 5 cartas selecionadas aleatoriamente de um baralho de 52 cartas?

Solução: x=

k = 4

n = 5

N = 52

$$h(x; N; n; k) = \frac{\binom{k}{x} \binom{N-k}{n-x}}{\binom{N}{n}}$$

h(2; 52; 5; 4) =
$$\frac{\binom{4}{2}\binom{52-4}{5-2}}{\binom{52}{5}}$$

(Haan, pag 82, exercício 4.19)

Em uma certa região existem 20 pequenas bacias apropriadas a um projeto de pesquisa. Seis tem características geológicas que permitem que uma grande quantidade de água superficial se infiltre e deixe a bacia via escoamento subterrâneo. O projetista quer selecionar 6 destas 20 bacias para estudar.

- a) Qual a probabilidade de que apenas 1 destas bacias com características geológicas descritas anteriormente seja selecionada?
- b) Qual a probabilidade de 3 destas bacias serem selecionadas?
- c) Qual a probabilidade de no mínimo 1 destas bacias ser selecionada?
- d) Qual a probabilidade de todas estas 6 bacias serem selecionadas?:

$$\begin{cases} N = 20 \\ n = 6 \\ k = 6 \end{cases}$$

a)
$$x = 1$$

$$h(x; N; n; k) = \frac{\binom{k}{x} \binom{N-k}{n-x}}{\binom{N}{n}}$$

h(1; 20; 6; 6) =
$$\frac{\binom{6}{1}\binom{20-6}{6-1}}{\binom{20}{6}} = \frac{\binom{6}{1}\binom{14}{5}}{\binom{20}{6}} = 0,310$$

b)
$$x = 3$$

h (3; 20; 6; 6) =
$$\frac{\binom{6}{3}\binom{14}{3}}{\binom{20}{6}}$$
 = 0,188

c) No mínimo 1

$$= 1 a 6 = h(1) + h(2) + h(3) + h(4) + h(5) + h(6)$$

= 1 ou mais

$$P(x \ge 1) = 1 - P(x < 1)$$

h (0; 20, 6, 6) =
$$\frac{\binom{6}{0}\binom{14}{6}}{\binom{20}{6}}$$

pela tabela Haan, 333

$$\begin{pmatrix}
6 \\
0
\end{pmatrix} = 1$$

$$\begin{pmatrix}
14 \\
6
\end{pmatrix} = 3.003$$

$$h(0; 20, 6, 6) = \frac{1 \times 3003}{38.760} = 0,0775$$

$$\begin{pmatrix}
20 \\
6
\end{pmatrix} = 38.760$$

Assim,
$$P(x \ge 1) = 1 - 0.0775 = 0.9225$$

d) Qual a probabilidade das seis bacias serem selecionadas?

h (6; 20, 6, 6) =
$$\frac{\binom{6}{6}\binom{14}{0}}{\binom{20}{6}}$$

pela Tabela Kaan, 333

$$\begin{pmatrix} 6 \\ 6 \end{pmatrix} = 1
\begin{pmatrix} 14 \\ 0 \end{pmatrix} = 1
\begin{pmatrix} 20 \\ 6 \end{pmatrix} = 38.760$$

$$h(6; 20, 6, 6) = \frac{1}{38.760} = 2,58 \times 10^{-5}$$

1.4.1. APROXIMAÇÃO DA HIPERGEOMÉTRICA PELA BINOMIAL

A distribuição Binomial pode ser usada como aproximação da Distribuição Hipergeométrica se a amostra selecionada for muito pequena em relação ao número total de itens \underline{N} do qual a mesma é retirada. Neste caso a probabilidade de sucesso "p" pode ser considerada aproximadamente constante ao longo das tentativas.

Exercício 6.22 (Haan, 72)

Compare as distribuições Binomial e Hipergeométrica para N = 40, n = 5, k = 10 e x = 0, 1, 2, 3, 4, 5.

Solução:

	Hipergeométrica	Binomial		
Х	h(x; N, n, k) = h(x; 40, 5, 10)	b(x; n, p) = b(x; 5, 10/40)		
0	0,2166	0,2373		
1	0,4165	0,3955		
2	0,2777	0,2637		
3	0,0793	0,0879		
4	0,0096	0,0146		
5	0,0004	0,0010		

Exercício 6.23

Um fabricante de pneus constata que dentre os 5.000 pneus enviados ao distribuidor, 1.000 estavam ligeiramente defeituosos. Se 10 pneus são comprados deste lote ao acaso, qual a probabilidade de se obter exatamente 3 defeituosos?

Solução:

N = 5.000
$$n \ll N \rightarrow aproximação pela Binomial.$$

$$x = 3$$

(Segundo Paul Meyer, pág. 208)

$$h(x; N, k, n) \sim b(x; n, p)$$
 quando

Uma companhia telefônica registrou que dentre os 5.000 telefones instalados, 1.000 são pretos. Se 10 pessoas são escolhidas ao acaso, qual a probabilidade de 3 estarem falando de telefones pretos?

Solução:

N = 5.000 K = 1.000
n = 10 X = 3

$$h(3; 5.000, 1.000, 10) = \frac{\binom{1.000}{3}\binom{4.000}{7}}{\binom{5.000}{10}} = 0,2015$$

$$3 \text{ pretos}$$

$$7 \text{ não-pretos}$$

• E aproximando pela Binomial?

$$p = \frac{k}{N} = \frac{1.000}{5.000} = 0.2$$

$$b(x; n, p) = b(3; 10, 0, 2) = {10 \choose 3} p^3 \cdot q^7 = {10 \choose 3} (0.2)^3 (0.8)^7 = 0.2013$$

1.4.2. DI STRIBUIÇÃO HI PERGEOMÉTRI CA MULTI VARI ADA

A distribuição pode ser extendida aos casos onde \underline{N} itens são fracionados em mais de duas categorias (sucesso e falha). Se N é fracionado em K células A_1 , A_2 , A_3 ... A_n com a_1 elementos na 1^a célula, a_2 na Segunda ... e a_k na k-ésima célula, a distribuição de probabilidades das variáveis aleatórias X_1 , X_2 ... X_k , que representam o número de elementos selecionados de A_1 , A_2 , ... A_k em uma amostra de tamanho n, é dada por:

$$h(x_{1}, x_{2} ... x_{k}; a_{1}, a_{2} ... a_{k}, N, n) = \frac{\binom{a_{1}}{x_{1}} \binom{a_{2}}{x_{2}} \binom{a_{k}}{x_{k}}}{\binom{N}{n}}$$

Um grupo de 10 pessoas é usado em um estudo de caso biológico. O grupo contém:

Qual a probabilidade de que em uma amostra aleatória de 5 pessoas, contenha 1 pessoa com sangue tipo O, 2 pessoas do tipo A e 2 pessoas do tipo B?

Solução:

$$X_1$$
 = número de pessoas – sangue O X_2 = número de pessoas – sangue A X_3 = número de pessoas – sangue B

$$a_{1} = 3$$

$$a_{2} = 4$$

$$a_{3} = 3$$

$$N = 10$$

$$n = 5$$

$$h(1, 2, 2; 3, 4, 3, 10, 5) = \frac{\binom{3}{1}\binom{4}{2}\binom{3}{2}}{\binom{10}{5}} = \frac{3}{14}$$

$$x_1 = 1$$
$$x_2 = 2$$

n = 5

$$x_3 = 2$$

5. DISTRIBUIÇÃO BINOMIAL NEGATIVA

Considere um experimento com as mesmas propriedades listadas para o experimento Binomial, ou seja:

- realizado e repetidamente
- experimento independentes

Suponha que os experimentos sejam repetidos até que um número fixo de sucessos ocorra. Ou seja, no lugar de calcular a probabilidade de "x" sucessos em "n" tentativas, onde o n é fixado, estamos interessados agora na probabilidade de que o k-ésimo sucesso ocorra na x-ésima tentativa.

BINOMIAL

n - fixo

AGORA - BINOMIAL NEGATIVA

"Qual a probabilidade do 3º sucesso ocorrer na 5º tentativa?

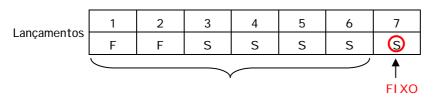
x - o número de tentativas necessárias para se obter o 3º sucesso (fixo = 3).

Dedução da Fórmula

Exercício 6.22

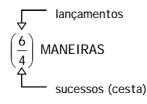
Um Jogador de basquete acerta 60% dos seus lançamentos. Qual a probabilidade de sua 5ª cesta ocorrer no seu 7º lançamento?

Solução: Uma seqüência possível é



S = fazer cesta F = não fazer cesta

os 4 sucessos anteriores podem ser combinados de



P (x = 7) =
$$\left(\frac{6}{4}\right)$$
 (0,6)⁵. (0,4)²

Se tentativas independentes podem ser repetidas com probabilidade de sucesso per de falha igual a q = 1 - p, então a distribuição de probabilidade da variável aleatória x deslocada pelo "número de tentativas necessárias para que o k-ésimo sucesso ocorra é dada pôr:

$$b^*(x; k, p) = \begin{pmatrix} x-1 \\ k-1 \end{pmatrix} - p^k q^{(x-k)} \quad x = k, k+1, k+2$$

Exercício 6.23

Qual a probabilidade de que a quarta a probabilidade de que ao quarta ocorrência de uma cheia decenária ocorra no 40° ano?

Solução:
$$Tr=10$$
 : $p=\frac{1}{10}=0.1$

$$x = 40$$

$$k = 4$$

$$b^* (x; k, p) = {\begin{pmatrix} x-1 \\ k-1 \end{pmatrix}} p^k \cdot q^{(x-k)}$$

$$b^* (40; 4, 0.1) = {\begin{pmatrix} 39 \\ 3 \end{pmatrix}} (0.1)^{-4} (0.9)^{36} = 0.021$$

Notas de Aula - Profa Ticiana Marinho de Carvalho Studart

(Ang É Tang, pág. 113 (exercício 3.11)) Uma torre de transmissão de rádio é projetada para um vento cinqüentenário. Qual a probabilidade da $2^{\frac{a}{2}}$ ocorrência do vento ocorrer exatamente nos $5^{\frac{a}{2}}$ ano após a conclusão da obra?

Solução: Tr= 50 anos

$$P = \frac{1}{50} = 0.02$$

$$k = 2$$

$$x = 5$$

$$b^*(x; k, p) = {x-1 \choose k-1} p^k \cdot q^{(x-1)}$$

$$b^*$$
 (5; 2, 0,02) = $\begin{pmatrix} 4 \\ 1 \end{pmatrix}$ (0,02)² (0,98)³ = 0,0015

Exercício 6.25 (Walpole, 134)

Calcule a probabilidade de uma pessoa jogando 3 moedas conseguir ou todas caras ou todas coroas pela segunda vez no quinto lançamento.

Solução::

$$\begin{cases} x = 5 & S = \left\{ \frac{\csc}{\csc}, \csc, \csc, \csc, kc, ckk, kck, kkk \right\} \\ k = 2 & P = \frac{2}{8} = \frac{1}{4} \\ P = \frac{1}{4} \end{cases}$$

$$b^* (x; k, p) = {x-1 \choose k-1} p^k \cdot q^{(x-k)}$$

$$b^* (5; 2, \frac{1}{4}) = \left(\frac{4}{1}\right) \left(\frac{1}{4}\right)^2 \left(\frac{3}{4}\right)^3$$

$$= 4 \cdot (0.25)^2 (0.75)^3$$

6. DISTRIBUIÇÃO GEOMÉTRICA

Se considerarmos o caso particular da Binomial Negativa onde k=1, teremos a distribuição de probabilidade do número de tentativas necessárias para que obtenha o primeiro sucesso.

Uma vez que o termos constituem uma progressão geométrica, costuma-se chamar esta distribuição de "Geométrica".

$$g(x; p) = p \cdot q^{x-1}$$
 , $x = 1, 2, 3, ...$

A media e a variância de uma variável aleatória que segue uma distribuição geométrica é dada por:

$$\mu = \frac{1}{p}$$

$$\sigma^2 = \frac{1-p}{p^2}$$

Resumo do Processo de Bernoulli (Haan, 75)

Em um processo de Bernoulli, a cada tentativa, um evento pode ocorrer com probabilidade "p" ou não ocorrer com probabilidade "q". A probabilidade do evento aconteceu e independente do que aconteceu nas tentativas anteriores.

O número de sucessos em um dado número de tentativas segue uma distribuição Binomial. A probabilidade de que o 1º sucesso ocorra na x-ésima tentativa é discrita pela Distribuição Geométrica. A probabilidade de que o k-ésimo sucesso ocorra no x-ésima tentativa é descrita pela distribuição Binomial Negativa.

A distribuição de probabilidade que descreve o comprimento de tempo (discreto) entre ocorrências também é descrito pela distribuição Geométrica. Note que a probabilidade de que x tentativas separem 2 ocorrências é o mesmo.

Exercício 6.26

Em um processo produtivo sabe-se que em média 1 em cada 100 itens são defeituosos. Qual a probabilidade de que o 5° item inspecionado seja o primeiro item defeituoso encontrado?

Solução:
$$p = \frac{1}{100} = 0.01$$

$$x = 5$$

$$g(x; p) = p. q^{(x-1)}$$

$$q(5; 0.01) = 0.01 \cdot (0.99)^4 = 0.0096$$

Exercício 6.27

Em uma dada cidade, em horário comercial, o número de chamadas está muito próximo da capacidade do sistema. Estamos interessados em obter o n° de tentativas necessárias para se completar a chamada. Imponha a probabilidade de se completar a chamada igual a p= 0,06 (durante o horário comercial). Estamos interessados em calcular a probabilidade de que sejam necessárias 5 tentativas para se obter a conexão.

Solução: p = 0,05

$$x = 5$$

$$g(5; 0.05) = p.q^{(x-1)} = (0.05).(0.95)^4 = 0.0041$$

Calcule o número médio de tentativas para se obter a primeira ligação completada.

$$\frac{\mu}{x} = \frac{1}{p} = \frac{1}{0.05} = 20 \text{ tentativas}$$

Ache a probabilidade de uma pessoa ter que jogar 4 vezes uma moeda para conseguir uma cara.

Solução: x = 4

$$p = 1/2$$

$$g(x; p) = q^{(x-1)} \cdot p$$

$$g\left(4; \frac{1}{2}\right) = \left(\frac{1}{2}\right)^3 \cdot \left(\frac{1}{2}\right) = \left(\frac{1}{2}\right)^4 = \frac{1}{16}$$

Exercício 6.29

Em determinada localidade, a probabilidade da ocorrência de uma tormenta em algum dia durante o verão é igual a 0,1. Admitindo independência de um dia para outro, qual a probabilidade da ocorrência da primeira tormenta da estação no dia 03 de janeiro ? (supor verão começando em 1º /dez).

Solução: x = 34 dias

$$p = 0.1$$
 $g(x; p) = q^{(x-1)} \cdot p$

$$g(x; p) = (0.9)^{33} \cdot (0.1) = 0.003$$

Exercício 6.30

Um motorista vê uma vaga para estacionamento em uma rua. Há cinco carros na frente dele, e cada um têm uma probabilidade de 0,2 de tomar a vaga. Qual a probabilidade de a vaga ser tomada pelo carro que está imediatamente adiante dele?

Solução: x = 5 dias

$$p = 0.2$$

$$p = 0.2$$
 $g(x; p) = q^{-1} \cdot p$

$$g(5; 02) = (0.8)^4 \cdot (0.2) = 0.082$$

Exercício 6.31

Se a probabilidade de um certo ensaio dê reação "positiva" for igual a 0,4, qual será a probabilidade de que menos de 5 reações "negativa" ocorram antes da primeira positiva?

Solução:

g (x; 04) =
$$q^{(x-1)}$$
. p
q (x; 04) = $(0,6)^{(x-1)}$. $(0,4)$

Chamamos de y o número de reações "negativas" antes da primeira positiva.

Exercício 6.32

Uma torre de transmissão é projetada para o vento que tem período de retorno de 50 anos.

- a) Qual a probabilidade que a velocidade de projeto do vento seja excedida pela primeira vez no quinto ano depois da estrutura estar terminada?
- b) Qual a probabilidade deste vento ocorrer pela 1ª vez nos primeiros cinco anos após o término da estrutura ?

Solução:

a) Tr =
$$\frac{1}{p}$$
 : $p = \frac{1}{50} = 0.02$

$$\begin{cases} x = 5 & g(x, 0.02) = (0.98)^4. (0.02) = 0.018 \\ p = 0.02 & 0.02 \end{cases}$$

b) P (x
$$\leq$$
 5) = $\sum_{x=1}^{5}$ (0,02) (0,98) x-1 = 0,02 + 0,0196 + 0,0192 + 0,0188 + 0,0184 = 0,096

7. DISTRIBUIÇÃO DE POISSON

Experimento cujo número de recessos ocorrem um dado em um dado intervalo de tempo ou em uma dada região são chamados de "Experimentos de Poisson." O intervalo de tempo pode ser de qualquer tamanho - um minuto, dia, mês, ano, verão, etc.

Exemplo:

- Número de chamadas telefônicas recebidas por hora em um escritório;
- Número de dias sem aula devido a neve durante o inverno.

A região em estudo pode ser um segmento de reta, uma área, um volume, etc.

Exemplo:

- Número de bactérias em uma cultura:
- Número de erros de datilografia por página.

7.1. PROPRI EDADES

- 1. O número médio de sucessos (μ) que ocorre em um dado intervalo de tempo ou em uma dada região é conhecido.
- 2. A probabilidade de um único sucesso ocorrer durante um intervalo de tempo bem pequeno (ou uma área bem pequena) é proporcional ao comprimento deste intervalo (ou área) e não depende do número de recessos que ocorrem fora deste intervalo de tempo (ou região).
- A probabilidade de ocorrência mais de um sucesso neste pequeno intervalo de tempo (ou área) é desprezível.

A distribuição de probabilidade de variável aleatória x de "Poisson", a qual representa o número de sucessos em um dado intervalo de tempo (ou região) t é dado por:

$$P(x; \lambda t) = \frac{e^{-\lambda t} (\lambda t)^{x}}{x!} \qquad x = 0, 1, 2...$$

A média e a variância é dada por:

$$\mu = \lambda t$$
 $\sigma^2 = \lambda t$

(dedução, Walpole 137)

Média:

$$E(x) = \sum_{x=0}^{\infty} x \cdot f(x) = \sum_{x=0}^{\infty} x \cdot \frac{e^{-\mu} \cdot \mu^{x}}{x!} = \mu \sum_{x=0}^{\infty} \frac{e^{-\mu} \cdot \mu^{x-1}}{(x-1)!}$$

fazendo y = x - 1

$$\mathsf{E}\left(\mathsf{x}\right) = \mu \sum_{\substack{y=0 \\ \sum f(y)=\sum p}}^{\infty} \frac{e^{-\mu} \cdot \mu^{y}}{y!} = \mu \qquad \text{c.d.q!}$$

A função repartição da distribuição de Poisson está tabelada na tabela A.2 do Walpole (págs. 678 à 680)

$$\sum_{x=0}^{\tau} p(x; \mu) \qquad \begin{cases} \tau - 0 & a \quad 37 \\ \mu - 0, 1 & a \quad 18 \end{cases}$$

Exercício 6.33

Durante um experimento científico, o n^0 médio de partículas radioativas passando por um contador em um milionésimo de segundo é 4.

Qual a probabilidade de que 6 partículas passem pelo contador em um dado milionésimo de segundo?

Solução:

$$\begin{cases} \lambda = 4/ms & \mu = 4 \\ t = 1 ms \\ x = 6 \end{cases}$$

Sabemos que: $P(x; \lambda t) = \frac{e^{-\lambda t} (\lambda t)^{x}}{x!}$ $P(6; 4) = \frac{e^{-4} (4)^{6}}{6!}$

Ou, usando a tabela A2

$$P(6;4) = \sum_{x=0}^{6} p(x;4) - \sum_{x=0}^{5} p(x;4)$$

$$= 0.8893 \text{Notas de Auia} - \text{Prote Ticiana Marinho de Carvalho Studart}$$

O número médio de barris de óleo que chegam por dia em um porto de uma dada cidade é 10. A estrutura portuária pode lidar no máximo com 15 barris por dia. Qual a probabilidade de que num determinado dia barris tenham que ser reembarcados nos navios?

Solução:

x - número de barris que chegam por dia

P(x > 15) ?
P(x > 15) = 1 - P(x \le 15) = 1 -
$$\sum_{x=0}^{15}$$
 p(x;10) = 1 - 0,9513
= 0.0487

Exercício 6.35 (Walpole, 94 - antigo)

O número médio de dias s aula devido a neve em uma dada escola de uma cidade dos EUA durante o inverno é

4. Qual a probabilidade desta escola fechar por seis dias durante o inverno?

Solução:

$$\lambda = 4$$
/ inverno
$$T = 1 \text{ inverno} \qquad \mu\lambda = 4$$

$$x = 6$$

$$P(x; \lambda t) = \frac{e^{-4} \cdot 4^6}{6!} = 0.1042$$

Exercício 6.36

O número médio de defeitos em uma adutora de 45 km de extensão, durante o ano é 10,3. Para outra adutora a ser construída com a mesma tecnologia e devendo receber os mesmos cuidados de manutenção, qual a probabilidade de ocorrerem no máximo 2 defeitos por ano, sabendo-se que a nova adutora terá 25 km de extensão?

Solução:

$$\lambda$$
 = 10,3 def / 45 Km
$$\lambda$$
 = 0,22 def / Km μ = 5,72 defeitos
$$t = 25 \text{ Km}$$

$$P(x \le 2) = ?$$

$$= \sum_{0}^{2} p(x;5,72) \rightarrow n\bar{a}o \text{ está tabelado}$$

$$= p(0;5,72) + p(N6t^{3}2) + p(2a5,72) + a \text{ Ticiana Marinho de Carvalho Studart}$$
 = 0,0757

Exercício 6.37 (Jairo da Fonseca)

Em média são feitas 2 chamadas por hora num certo telefone a) calcular a probabilidade de recebermos no máximo 3 chamadas em 2 horas. b) calcular a probabilidade de nenhuma chamada em 90 minutos.

Solução:

a) 2 chamadas / 60 minutos

$$\lambda$$
 = 2 chamadas/hora $\rightarrow \mu$ = 4 chamadas

t = 2 horas

$$P(x \le 3) = ?$$

$$= \sum_{0}^{3} p(x; 4) = 0.4335$$

b) 2 chamadas / 1 hora μ = 3 chamadas

$$t = 1,5$$

$$x = 0$$

$$p(0; 3) = \frac{e^{-3}. 3^{0}}{0!} = 0.0498$$

7.2. APROXIMAÇÃO DA BINOMIAL PELA POISSON

Seja x uma variável aleatória binomial com distribuição de probabilidade b(x; n, p). Quando n $\rightarrow \infty$, p \rightarrow 0 e μ = np permanece constante, teremos:

$$b(x; n, p) \rightarrow p(x;)$$

Exercício 6.38

Em um processo produtivo onde vidro é produzido, ocasionalmente bolhas ocorrem (defeito). Sabe-se que em média 1 em cada 1000 itens produzidos tem defeito.

Qual a probabilidade de que uma amostra de 8000 itens, menos que 7 itens tenham defeitos?

Solução:

Este é essencialmente um experimento binomial com n = 8000 e p = 0,001. Como p é muito próximo de 0 e n é bastante grande, podemos aproximar com uma distribuição de Poisson usando:

$$\mu = 8.000 \cdot 0,001 = 8$$

assim,

$$P(x < 7) = \sum_{x=0}^{6} b(x; 8000, 0,001) \cong \sum_{x=0}^{6} p(x; 8) = 0,3134$$

Exercício 6.39

Qual a probabilidade de uma tempestade com tr=20 anos ocorra uma vez em um período de 10 anos?

Solução:

Binomial

$$p = \frac{1}{Tr} = \frac{1}{20} = 0.05$$

$$x = 1$$

n = 10
$$\rightarrow$$
 b(x; n, p) = $\binom{n}{x} p^{x} \cdot q^{(n-x)}$
= $\binom{10}{1} (0.05)^{1} (0.95)^{9} = 0.315$

Poisson

$$n \cdot p = 10 \cdot 0.05 = 0.5$$

$$X = \hat{x}$$

$$p(x; \mu) = \frac{e^{-\mu}. \mu^x}{x!} = \frac{e^{-0.5}. 0.5}{1!} = 0.303$$

Exercícios Propostos

 Uma fábrica de pneus verificou que ao testar seus pneus nas pistas, havia em média um estouro de pneu em cada 5.000 km.

- a) Qual a probabilidade que num teste de 3.000 km haja no máximo um pneu estourado?
- b) Qual a probabilidade de que um carro ande 8.000 km, sem estourar nenhum pneu?
- 2) Certo posto de bombeiros recebe em média 3 chamadas por dia. Calcular a probabilidade de:
 - a) receber 4 chamadas num dia;
 - b) receber 3 ou mais chamadas num dia.
- 3) A média de chamadas telefônicas numa hora é 3. Qual a probabilidade de:
 - a) receber exatamente 3 chamadas numa hora?
 - b) receber 4 ou mais chamadas em 90 minutos?
- 4) Na pintura de paredes aparecem defeitos em média na proporção de 1 defeito por metro quadrado. Qual a probabilidade de aparecerem 3 defeitos numa parede de 2x2 m?
- 5) Suponha que haja em média 2 suicídios por ano numa população de 50000. Em uma cidade de 100000 habitantes, encontre a probabilidade de que em um dado ano tenha havido:
 - a) 0;
 - b) 1;
 - c) 2;
 - d) 2 ou mais suicídios.
- 6) Suponha 400 erros de impressão distribuídos aleatoriamente em um livro de 500 página. Encontre a probabilidade de que uma dada página contenha:
 - a) nenhum erro;
 - b) exatamente 2 erros.
- 7) Uma loja atende em média 2 clientes por hora. Calcular a probabilidade de em uma hora;
 - a) atender exatamente 2 clientes;
 - b) atender 3 clientes.
- 8) Aplicando as definições de média e variância, prove que a média e a variância de uma Poisson são iguais a λt.